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SUMMARY

‘In the classical Secretary Problem, the player tries to
choose the best object of a sequentially ordered set of size N .
The value of each object is given by its rank only. At any stage,
the player knows the rank of the current object relative to those
already Seen, Once rejected, an object cannot be chosen later.

In this paper, a generalized Secretary Problem is discussed.
The player is given d choices to choose all of the d best
objects. The optimal procedure is found by converting the d
choice Secretary Problem into a Wwalk® in a two-dimensional grid.
A simple approximation to the optimal strategy rule is also

presented.
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1. INTRODUCTION

The classical Secretary Problem begins with the premise
that N objects or individuals can be ranked from best (rank = 1)
to worst (rank = N). As each object is shown to the experimentor
(or player), he is able to rank it only in relation to those
objects that he has already seen. The player may select the current
object, at which point the procedure ends, or he may elect to reject
the current object and sample the next. The player also operates
under the restriction that once an object has been rejected, it may
not be chosen later. If no choice has been made, he is required to
choose the Nth object.

The optimal procedure for the player to follow depends upon
the type of reward he receives. Oftentimes, the player tries to
pick the best object. 1In this case, the optimal procedure maximizes
the probability of success. This problem has been solved in a
variety of ways, by Lindley (1961), Dynkin (1963), Gilbert and
Mosteller (1966), Dynkin and Yushkevich (1969), DeGroot (1970),
Chow, Robbins, and Siegmund (1971), and Sirjaev (1973). The problem

also appeared in Marvin Gardeners' Scientific American column (Fox

and Marnie (1960), Moser and Pounder (1960)),and in the American

Mathematical Monthly "Problems and Solutions" (Bissinger and Siegel

(1963), Bosch (1964)).

Several authors have discussed the Secretary Problem when

the player is given one choice to choose any of the d best objects.
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Gilbert and Mosteller (1966) discussed the case d = 2. Gu;ein-
Zade (1966), Dynkin and Yushkevich (1969) and Rasmussen (1974 and
1975) have generalized the problem further.

Another related problem that is of interest is to allow
the player more than one choice to select the best object. This
case has been discussed by Gilbert and Mosteller (1966).

The problem that will be discussed in this paper is a
combination of the two generalizations given above. The player is
given d choices to select all of the d best objects. We will
derive the optimal procedure, which in this case maximizes the
probability of selecting the d best. The form of this optimal

procedure is:

Procedure A: Choose d starting times tye cee td >
Do not select any of the first tl-l objects. The d choices are
then made in one of three ways:

(1) At any time, select an object that is better than at

least one of the objects already chosen.
th th

(2) Make the ) choice of the k object if k 2 tj'
and the kth object has rank j or better, where 1 s j =< d.
(3) If m choices have been made, 0 s m < d , and d-m

objects are left, all of the remaining objects must be chosen.

th choice is made.

The procedure ends when the d
The probability of success using Procedure A will be denoted
by PA(CS; d,tl,...,td,N) , where CS means correct selection. This

will be abbreviated by PA(CS) when there is no ambiguity. The




optimal starting times ti, o ta, are chosen to maximize PA(CS)

for a given N . As in Gilbert and Mosteller (1966), an object

that is better than all others seen so far will be called a candidate.
In addition, we will consider an approximation to the optimal

rule, based on the optimal starting time for the last choice, ta -

The approximately optimal rule has the same form as Procedure A,

but the starting times are easier to compute. These approximately

optimal starting times do not necessarily maximize PA(Cs).
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2. THE d CHOICE PROBLEM - OPTIMAL PROCEDURE

In this section, we will show that the optimal procedure

for the d choice Secretary Problem has the form of Procedure A,

with starting times t¥, ..., ta . If the player is forced to
choose the last d-m objects, as in (3) of Procedure A, he may
choose an object that is worse than one already rejected. If such
an object is chosen, he cannot succeed in choosing the d best.
Unless the player makes choices using (1) or (2), he will not
succeed. Thus, without affecting PA(CS), the type (3) choices
can be ignored, since they are included only to insure that d
choices are made. When computing PA(CS), it will be assumed that
this has been done, and that choices are made using only (1) and
(2): Eliminating tvpne (3) choices will make certain aspects f the
construction of the optimal procedure clearer. %

Nikolaev (1977) has shown that Procedure A is optimal for
the case d=2. 1In addition, both he and Glasser (1978) have derived i
exact expressions for PA(CS: 2,t1,t2,N). An exact expression for
PA(CS; J'tl'tz't3'N) has also been derived by Glasser. The task
of deriving an exact expression for PA(CS) , however, is quite
tedious even for d=3.

Theorem 2.1 will show that Procedure A is optimal, and give
a method to compute the optimal startina times ti,...,t' . In the

d

next section, we will give a specific formulation for té , and

use it to construct an approximation to the optimal rule.
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To begin with, define f = N-d , and consider the two-
dimensional grid of points (i,j), where i =0,1,...,d , and
iy =0,1,...,f. When the player is at the point (i,j), it means
that of (i+j) items sampled so far, he has accepted i and rejected
j of them. From the point (i,j), he will move to the point (i+l,3)
if he accepts the next object, and (i,i+l) if he rejects it.

Any rule for selecting the d best objects can be put
into a 1-1 correspondence with a specific”"walk"” on the grid. As
an example, consider Procedure A. If the player is at the point
(i,3), and the (i+j+l)5t object is ranked i or better, he will
accept it and move to (i+l,j). If the (i+j*1)St object has

rank i+1, and i+j+1 > ti then the player also accepts the

+1 '
object and moves to (i+l,j). Otherwise, the object is rejected
and the player moves to (i,j+l1).

Any time the player "walks" off the grid, he loses the
game. For instance, at the point (d+1,3) , he has chosen too
many objects. At the point (3,f+1), there are not enough objects
left to make d choices.

It will be seen in Theorem 2.1 that the optimal procedure

requires the playver to choose an object better than any object

already selected, and reject an object worse than any object ]

already selected. Thus, starting from the point (0,0), the player

succeeds if and only if he reaches the point (d,f). If at any time

the player chooses an object that is not among the d best, the

optimal procedure will force him to choose too many objects. If




the player rejects an object that is one of the d best, the

optimal procedure will not allow him to make d selections.
A utility function can be defined that reflects the player's
desire to choose the d best object. This utility is a function
of the ranks of the objects chosen, and is given by:
1 (11,12,...,id) = {1,2,c::,8)

U(il,lz,...,xd) = {2.1)
0 otherwise.

The player is interested in choosing the d best, and is not
concerned with the order of their arrival. Therefore, the ranks of
the objects chosen can be permuted in any order without affecting
the value of the utility function.

Since the player succeeds in choosing the d best if and
only if he reaches the point (d,f), the utility function in (2.1)
can be related to the grid described earlier. Assign each point
on the grid a conditional expected utility u(i,j). The values
u(i,j) are conditioned by the player havinag accepted i out of
i4+3 objeqts seen so far. It is also assumed that at each step,
the player will elect to continue in an optimal manner. The
computation of these u(i,j)'s 1is the subject of the next theorem.

Corollary 2.1 shows that Procedure A is the optimal procedure for

the d choice Secretary Problem.




Theorem 2.1:

i‘u(i+1,j) + l'u(i;j"l) + max[u(i,j+l)'u(i+1'j)]
149+1 i

u(i,j) =

where i = 0,1,...,d and 4 = 0,1,...,€ . Initial conditions

are given by:

u(d,f) 1,

u(d+1,3) w(i, %1y = 0 ,
for 1 = @, ;..:,8=1; @and 3 = 0. .Y.....F=1

Proof: The rank of the (i+1‘+1)St object can be any of
1,2,...,1i+j+1, with equal probability. This object will be better
than at least one of the objects already selected if it has
relative rank i or better, with probability i/(i+j+1). When the
object is better than an object already selected, it must be
selected if the player wishes to continue the possibility of
selecting the d Dbest.

Otherwise, if the player rejects an object ranked i or
better, one of two possibilities can occur. If the (i+1+l)St
object is not one of the d best, he has already chosen an object
that cannot be one of the d best. If the (i+*’|+1)St object is
one of the d best, the player will have rejected an object that
is one of the d best. 1In either case, the player cannot choose

all of the d Dbest.




Thus, an object ranked between 1 and i must be'accepted.
In this case, the player moves from (i,j) to (i,3j+1).

when the (i.+j+l)st object is worse than at least one of
the objects already selected, with relative rank between i+2 and
i+j+1, it is better to reject it. The reasons are similar to
those given above. The probability that the rank is i+2 or
greater is 3j/(i+j+l1). The player in this case moves from (i,3J)
to (1,3+1).

A question arises then, only in the case that the (i+j+1)St
object is neither better than any objects already selected, nor
worse than any already rejected. This means that the rank of the
new object is i+l , and this occurs with probability 1/(i+j+l).

For this last case, the best course of action depends on
the expected utility if the object is rejected, u(i,j+l), and
the expected utility if the object is selected u(i+l,j). Clearly,
if u(i+l,3) > u(i,j+1) it is better to accept the new object.
When u(i+l,j) < u(i,j+l) it is better to reject the new object.
when the utilities are equal, the choices are equivalent.

So the conditional expected utility at (i,j) 1is given
by (2.2). Using (2.2), with initial conditions (2.3), the values
of wu(i,j) can be computed backwards beaginning with wu(d,f) = 1.

The optimal procedure, following the reasoning of the

above paragraphs, is given by:

Procedure A': Accept the (i+j+1)St object if it is better

than at least one of the objects already selected. Reject the




(i+j+1)St object 1f it is worse than at least one object already
rejected. Otherwise, accept or reject the (i+j+1)St object if
u(i+l,j) 1is greater than or less than wu(i,j+l) respectively.
As an example, assume that the player is to pick the best
two out of seven objects. The grid for the optimal procedure is

given below, with N =7, d =2, f = 5;:

1 2
5 5T 5 1
p 13 9 5
105 21 v
3 86 47 10
420 R - 2T
2
|
2 343 l 171 30
1260 | §20 105
1 S ! 402 _80
P % L 260 420
5 745 462 60
| 2520 . 2520 . 1260
0 1 <

The arrows connect the path with the maximal expected utilities.
It will be shown in the next corollary that Procedure A

with starting times ¢t* 1s the same as Procedure A'. The

Trees

following definition will be helpful. Consider the diagonal set of

*
£
(8

points f(o,m), (1,m-1l), (2,m=-2), ..., (m=1,1), (m,0). Call the

set of points on this diagonal that are also on the grid an axis

of constant sample size m . When no ambiquity exists, the term
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will be abbreviated as an axis of size m , or simply cailed an
axis. In the above examnle, the points (0,5), (1,4), and (2,3)
are an axis of size 5.

Note that in the above example, there is one maximal utility
on each axis, and the utilities decrease for points further away
from the optimal path. This 1s the subject of the following
corollary.

Corollary 2.1l: On each axis of size m , m=20,1,...,N-1,

u(i,j) 1is a unimodal function of 1 , and is monotonically
decreasing on each side of the mode.

Proof: By backward induction. Assume that d < f . By

(2.2), wu(d-1,f) = d/N < f/N = u(d,f-1) . Thus, the corollary is
true for m = N-1 . Assume that the corollary is true for m+l,
and let i+j = m . Consider the points (i-1, j+2), (i,3j+l) , and
(i+1,3), and assume that they lie above the optimal path. Then
the conditional expected utilities for these points satisfy
u(i-1,j+2) = a < u(i,j+l) = b < u(i+l,j) = c

From (2.2), the following may be computed:

: ib + (j3+1)a
u(i-1, j+1) = T
i . {i+l)e + 1b
U(lr]) e i"i*l
Since a <b<c, uli,j) - u(i=1l, j+1) > 0 .

In a similar manner, it can be shown that for points below
the optimal path, as the first argument increases the expected utility

decreases. This completes the proof.
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Corollary 2.1 shows that above the optimal path, the player
will select an object when given a choice. Below the optimal path,
he will reject an object when given a choice. Using the optimal
strategy A', the player will attempt to stay as close as possible

to the optimal path.
th

In other words, if the choice has not been made, and
the kth object is ranked jth, where k = t; . the optimal
strategy A' says to choose the object. Otherwise select objects

better than at least one object already selected, and reject any
object that is worse than any object already rejected. This is the
same as Procedure A with starting times ti,...,ta :

In the example computed before, the optimal starting times

mw 2, tk = 5, The example is also an application

are given by ¢t 5

1
of "Corollary 2.1,
Using the utility function (2.1), it can be seen that the
probability of success given that the player is at the point (d,f)
is the same as the utility wu(d,f) = 1 . Working backwards, the
conditional expected utility wu(d-1,f) 1is the same as the
conditional probability that the player wins, given that he is at
the point (d-1,f) and that he will continue to the last step in
an optimal manner. Continuing to work backwards, the expected
utility u(0,0) 1is the same as the probability that the player

wins using the optimal starting times ti,...,té, and making the

optimal choice at each step:

u(0,0) = PA(CS: d,ti,...,ta,N)




In the above example, this probability is given by u(0,0) =
745/2520 = .295635.

Tables 1 and 2 contain the optimal starting times and the

probability of success for the d choice Secretary Problem for
d =2,5 and N = d(1) 50(10) 100, 1000. All of these calculations
were done using Theorem 2.1. As expected, when d = 2, the results
are the same as those derived using the exact expression of
Nikolaev (1977) or Glasser (1978).

In Tables 1 and 2, it appears that the optimal probability
of success is a non-increasing function of N . This is the

subject of the next theorem and corollary.

Theorem 2.2: 1 AR - - - (R
y B (i) (i) |
- — " 3 . -
PA(CS, d,tl,...,td,N) *= 3 {;l PA(CS, d,tl reeeaty N-1) ,
where t(i) TR P o & A (SN "R
) ] )
m £.-] > % 3 i € £

Proof: Among N applicants, the probability that the

worst is in position i 1is 1/N, so that PA(CS: d,tl.....td.N) =

N
1:1 PA(CS: d,t,..n by ,NIL) where P, (CS; d,tl,...,td,Nli) is

the conditional probabiltiy of success for procedure A given that

the worst (rank = N) object is sampled ith.




e

Consider two cases:
Case (a): t, > 1 (so the first object is not chosen).
For any value of 1 , the worst object will not be chosen, since

it is worse than an object already rejected (the first). Thus,

in this case, the ith object could be ignored without affecting

the probability of success, provided we renumber properly, i.e.,

: e 3 (i) (i) 3
P, (CS; d,t ..td.le) Pa(Cs; d, 7", .. kg7, N-1)

1,--

Case (b): £y » l1(so the first object is chosen). The same

argument shows that P (CS; d,t,,..., le) =Pp (CS; 4, t‘l) oo (1) /N-1) , 3

4
i

provided i 1is not too small, namely if 1i>d or ti>i . Otherwise,

i <d and tj = 3 for all 3 = i , 1in which case all of the first
.
i objects are chosen, including the worst, so
. 2 (1) b 1 R
PA(CS. d'tl""'td'N) 0 = P {C8; o, tl ..,td ,N-1)
Corollary 2.2: (CS, a; tl,...,t&,N) s P, {CS; 4, tl,...,ta,N-l).

Proof: The corollary follows directly from Theorem 2.2.

We have seen that PA(CS: d,t

PA(CS: ti,...,té,N) - We shall now compute a lower bound for

1....,ta,d#l) 2 PA(CS;ti....,ta,d+2) 1

the probability of success. Consider the strategy which rejects the
first r and picks when possible anything after that. One reaches
(0,r) with probability 1 and beyond that the probabilities at (i,3J)

are (i+l1)/(i+j+1) to (i+l,j) and j/(i+j+1) to (i,j+1). Any path

13
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from (0,r) to (d,N-d) will have the combined probability

12 *++ d*r(r+l) +++ (N=-d-1)/((r+1) (r+2) -++ N) and there are
(N;t) such paths, so the total probability of success by this
X"

strategy is

(N-r) -+ (N-r-d+l) dtr g 1_5) T
d! N --- (N=d) N-d ) N-d+1)/°

If we choose r = DN—d)/(d+lﬂ where [?] is the greatest

|

|

integer less than X , then the product converges to: i
1 1_1)") 1

d+1 d+1 e(d+1) -

There is an obvious symmetry between the optimal strategies
for choosing the best d out of N and the best N~d out of N .
In particular, for N=2d, we have uf(i,j) = u(j,i) and the
maximum on each diagonal 1i+3j = r occurs at (r/2, r/2) for even
r and ((x+))/2, {(r=~1)/2) @and (({r-1)/2, (r+1)/2) forxr odd ¢ .

In other words, choose, if possible, when i < j , reject if possible,

when 1 > j . When 1 j, either decision will do.

Knowing the optimal strateqy for the case N=2d, the
probability of success can be calculated by starting at (0,0).
Let p(i,j) be the probability of getting from (0,0) ¢to (i,]j).
Since one can only get to (i,j) from either (i-1l,3) or (i,j-1),

we have:

p(i,j) = pc(i—l.j) pii=l,]) + pr(i,j-l) pli,3=1) , (2.4)

14
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where
(1,3)

when at

pc(i,j) is the probability of choosing an objeét when at

and pr(i,j) is the probability of rejecting an object

(2,.3]).

Pc(i,3) = (i+1)/(i+j+1) i 1<%
= i/(i+j+1) i>

1 - :

- 5 - =™ N

P i, 3) = j(i+j+l) it 1<}
w {(§+l)/{i+]+1) -

R : -

-~ b | X - e

Then, by induction beginning at (0,0), it can be shown that:

(Do the

symmetr

pli,3) - %;%%%TT for -
_ o AEawl P

1)+ )

1 . .
BT i

cases i=j, i=j+1, i>j+1 separately; the rest follow by
Y.) 1In particular, p(d,d) = 1/(d+1l) = PA(CS; d,ti.....ta,Zd).

The case N = 2d+1 can be handled similarly once the

strategy is determined. Using an inductive proof similar to that

of coro

llary 2.1, it can be shown that the maximum occurs at

15
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(r/2,r/2) or ((r-1)/2,(r+1)/2) depending on whether r is even
or odd. (More specifically, it can be shown that for eveh r ,

u(r/2,r/2) > ul(r-2)/2,(r+2)/2) > u((r+2)/2,(r=2)/2) > ... >

u(lr-21)/2, (r+21)/2) > u({{r+21i)/2, (r-2i)/2) and for odd r ,
u((r-1)/2,(r+1)/2) > u((r+l1)/2,(r-1)/2) > ... >u((r-2i-1)/2,
(r-25+1)/2) > ul{r-21+1)/2, {r-21-1)/2} > ... )}
The strategy, therefore, is to choose, if possible when
i < j, and reject if possible when i 2> j. Knowing this, we may
proceed as in the case N = 2d. For this case, the values of

pc(i.j) and pr(i,j) are given by:

pcli,j) =  (i+l)/(i+j+1) A P
= 1/(i+j+1) L T
pr(i,j) » (L) if L <1
= (3+1)/Li+i+1) i a4,

Starting with (0,0) and using (2.4), we can show by induction
that
p(i,j) = 1/3 i 4 =4

— S TR, S5
(Do the cases i < j-1, i = j-1, 1 = §j and i > j separately.)

Thus, PA(CS: d,t%,...,t%,2d+1) = 1/(d+1). Note the

coincidence that PA(CS: d,t',...,té,Zd) = PA(CS; ti....,ta,2d+1).

16




3. RESULTS FOR THE LAST CHOICE

When the formulation of the previous section is used, it is

h

possible to determine a general formula for the at starting time.

It is easier to do this if some new notation is introduced. Let:

b(i,j) = Sl ("i} (3.1)
i '

By the definitions of b(i,j) and c(i,j),

c(i,j) = 3bli,j)
The following result shows why this new notation is useful.

Lemma 3.1: (1) If b(i+l,j) < c(i,j+l), then

bi{i;j) = b(i+l,3) + bii,i+l} . (3.2)

(2) If Db(i+l,3) > c(i,j+l) , then,

cli,§) = c(i+l,§) + c(i,j+1) . (3.3)




Proof: First, to show both (1) and (2), it is necessary to
show that b(i+l,j) < or > c(i,j+1) if and only if wu(i+l,j) <
or >uf(i,j+l). By (3.1), these assertions must be true, since:

b(i+l,3j) - c(i,j+l) [u(i+1,j) - u(i,j+lﬂ -
+1)

To show (1), if Db(i+l,j) < c(i,j+l) , then u(i+l,j) <

u(i,j+l). From (3.2), this means that:

¢ a 1 ; " ) +1 S
u(i,j) = m\l(l*l.]) + '{%31‘1‘0(1,]4'1)

Multiplying both sides of (3.2) by (g)/i(lzj) gives the result.

(2) is proved in a similar manner.

Lemma 3.1 says that below the optimal path, the b(i,j)'s
can be found using (3.2), while on or above the optimal path the
c(i,j)'s can be found using (3.3). Using Lemma 3.1, an expression

for the last starting time is derived in the next theorem.

Theorem 3.1: The last optimal starting time is given by:

t'

minzm' N 1 < 1}
= [ &l = -
d k=m+1 k-d d

(3.4)

(3.5)




ramn | A T

Proof: Assume that f > d . From (2.2), it can be seen

that:

for 1 = 0,).....8~Y . Thus, from (3.1},

ol 8y = % TR T PR

Again using (2.2), the conditional expected utilities of the last

column are given by:

. d+j N
U(dn)) ’( j ) / (d) '
for j = 0,1,...,f-1 . So from (3.1), the last column of c(i,j)'s
is given by:

cld,y) = 1/) p . 20 8 PRPERE L
Using (3.1) and (3.6), it can be seen that:

b(d,j) = 1/d J = 0,1, ,8=1.

Now consider the values of c¢(i,j) and b(i,j) for the
next to last column. Start with the point (d-1,f-1) and decrease
the second argument one step at a time. As long as c¢(d-1,j) <
b(d,j-1) = 1/d Lemma 3.1 gives:

f

. 1
c(d-a,j) = b
k=7 k

19
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The partially computed grid of c(i,j)'s looks like:

p 1 1 1 1
F £ f F
i} 1 i |
£-1 ¥ Ty = 4
T 1 1 1
£-2 A = s ~ | =3
j f 1
- 3
0 1 d-1 d

The last choice begins to be desirable at g , where q is

the first row that:

A
C(d‘l,q) - :, k > d = b(d.q-l)
k=q
At the point (d-1,q), d+g-1 objects have been sampled. So the
last starting time is given by d4+g . The sum in (3.7) can be
N
rewritten as p 3 E%E , since by definition, f = N-d. By
k=q+d

defining m = g+d, the definition of ¢t* can be written as:

tt = max{q! f 1,1 i+ d
d xeg & d

Equation (3.8) is equivalent to (3.5).
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Theorem 3.1 is a generalization of results given in Gilbert
and Mosteller (1966) and Lindley (1961) for d=1 , and the results
found in Glasser (1978) for d=2 . Bounds can be placed on ta -
and are given in the next corollary.

Corollary 3,1:

1/4 1/d4

(N-d+1) e +d-1 < t§ < (N-d) e + d+l

Proof: From (3.5), for m=t5 ‘

N

o} kol
k‘-‘ k-d d
=m
o o3
k=m+l K~ d

For any decreasing integrable function h(x) , defined on the real
numbers, we have:

b+1

b Lo)
/ hfe)de <« 2 hik) </ h(x)dx.
a k=a a-1

Applying (3.12) to (3.10) and (3.11) gives:
1 N-d
a < o9 S8y

1 N-d+1
3 > o9 =3

Rearranging (3.13) and (3.14) completes the proof.
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It can be seen from Corollary 3.1 that if N increases to

infinity while d remains constant, the following is true:

1im te¢/N = e /4,
d
N s
The importance of this section is shown in the next section.
There, a rule will be given to approximate the optimal starting
times. This rule will allow the player to calculate approximately

optimal starting times much more readily than the true optimal

starting times.




4. THE LAST CHOICE RULE

Even for d=2, computing the grid in Section 2 is more
direct and is a faster way to find the optimal starting times than
the method outlined in Nikolaev (1977) or Glasser(1978). Computational
difficulties will still arise, however, for the player who does not
have access to a computer. It will be seen shortly that the
approximation developed in this section is close even for moderately
sized N .

The optimal last starting time, ti » 18 given in Theorem
3.1. From corollary 3.1, it can be seen that t& is contained in
an interval of length 2 - o_lld , a value between 1 and 2. As

d becomes larger, the size of this interval becomes closer to 1.

An approximation to t& is given by:

Dx - a+1) o /4, d] )

where [X] denotes the greatest integer less than or equal to X.

The value of ty differs by at most one from the value

of té . Most of the time, especially as d becomes larger,

tT and ¢t will be the same. The advantage to using td is its

d d

computational ease, especially when N 1is at all large. The Last

Choice Rule can now be defined.




Procedure B (The Last Choice Rule): d starting times are

chosen in the following manner: the dth starting time is found

using (4.1). By redefining N as td-l + and d as d-1 , the

next-to-last starting time is found by again applying (4.1), or:

C d

s ™ [(:' = Asly o 2 10e1) d-l]

Continue in this manner until all d starting times have been
computed. The player then chooses objects on the same basis as
Procedure A.

The probabiltiy of success using the Last Choice Rule will

be denoted by PB(CS) . The Last Choice Rule is not optimal, unless

Tables 1 and 2 give the starting times and the probability
of success for both the Optimal Rule and the Last Choice Rule.
Values of d are 2 and 5, and N =4d(1) 50(10) 100, 1000.

The computation of the »robability of success when the
Last Choice Rule is used is similar to the method given in Section 2.

The conditional utilities of the grid are given by:

(i+1ru(i+l,j) + j ° u(i,j+1) : b
— {+7+] if i+j+l 2 ti+1

s uli,jel) + (41 - u(i,j+l) .

I+3+1 i+i+1 < t

ivl
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The difference between (4.2) and (2.2) is that on the optimal
grid, given a choice, the player chooses the point with the larger
expected utility. If the starting times are assigned beforehand,
as in the Last Choice Rule, the player when given a choice, is forced
to select an object if the starting number has been reached.

Tables 1 and 2 show the accuracy of the approximations. In
these tables, the worst percentage decrease using the Last Choice
Rule for N 210 1is 4.2 percent, when d=5 and N=21. For d=2,
as long as N 1is greater than 14 the percentage decrease is well
under 1 percent. The percentage decrease is under 1 percent for
d=3 (not shown) when N > 20 , for d=4 (not shown) whén N > 26 ,
and for d=5 when N > 32 . For N larger than 100, the decrease
is reduced to less than .5 percent in almost all cases.

While the percentage decrease in the probability of success
using the Last Choice Rule is an increasing function of 4 , it
appears from the calculations done so far that this error is still
very reasonable. For the statistician who does not have access to
a computer, it is an easy way to approximate the optimal starting
times using only a hand-calculator or tables of the exponential
function.

For those with access to a computer, programming algorithm
(2.2) is not difficult, and it is a fast algorithm to run. This
would, of course, negate the need for the Last Choice Rule as an

approximation.
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TABLE 1

STARTING TIMES AND PROBABILITY OF SUCCESS FOR THE

OPTIMAL AND LAST CHOICE RULES, d=2

Optimal Rule

N Starting Times PA(CS)
2 Ll 1.000000
3 L3 .500000
4 1;3 +333333
5 2,4 + 333333
6 25 .313889
7 2:5 .295635
8 2,6 .279960
9 3,7 .273898
10 . W 211433
11 3,8 .266299
12 3,8 .260400
13 4,9 .257516
14 4,10 .255854
15 4,10 .254142
16 4,11 251513
17 s .248729
18 - . .248519
19 5,13 .247338
20 5,13 .246057
21 5,14 .244357
22 6,14 .243660
23 615 .243309
24 6,16 .242398
25 6,16 .241379
26 i .240668
27 8 I .240293
28 1,18 +239916
29 7,19 + 238170
30 8,19 .238389
31 8,20 .238299
32 8,20 .237901
33 8,81 « 2371532
34 8,22 .236909
35 9,22 .236661
36 9,23 .236509
37 9,24 « 236133
38 9,24 .235766
39 10,25 .235410
40 10,25 e 0 b1 4 )
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Last Choice Rule

PB(CS)

1.000000
.500000
< 333333
« 333333
.313889
«295635
.279960
.262720
.271433
.266299
.260400
.254872
.248040
.254142
2531813
.248336
.248519
.247067
.246057
.244357
.242263
.243309
.242186
.241379
.240144
.238609
.239916
.239002
+ 238332
« 2371370
.236168
«231532
«+236909
.236190
.236509
.236115
.235766
.235228
.234601

Starting Times
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41
42
43
44
45

48
49
50
60
70
80
90
100
1000

Optimal Rule

TABLE 1
(Continued)

Last Choice Rule

Starting Times

10, 26
10,27
10,27
11,28
11,28
11,29
11, 30
12,30
12,31
12,31
14,37
17,44
19,50
21,56
24,62

230,608

PA(CS) PB(CS) Starting Times
-2 35111 <2351)1 10, 26
.234762 .234733 10,26
.234405 . 234405 10,27
.234343 .233933 10, 28 l
.234184 «233377 10,28 ‘
.233991 .233991 11,29 ?
.233666 .233632 11,29
.233539 s 433325 11,30
.233452 .233452 12,31
233271 “233271 12,31
.231853 + 231853 14,37
.230943 .230807 16,43
.230274 .230004 18,49
.229714 .229367 20,55
.229260 .229241 23,62
.225816 .225739 223,607
27
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TABLE 2

STARTING TIMES AND THE PROBABILITY OF SUCCESS FOR THE
OPTIMAL AND LAST CHOICE RULES, d=5

Optimal Rule Last Choice Rule

Starting Times PA(CS) PA(CS) Starting Times
1:2:3;:4:5 1.000000 1.000000 1,2,3,4,5
1,2,4,5,6 .427778 . 380556 1,3,4,5,6

Ky By, T .295635 .275397 L.3,5,6,7
L;3,5.,6.8 .238194 « 231250 i 5% G A
2:3:5.7.:% .200000 .200000 $:3:5,7.:9
2,4,6,8,10 .166667 .166667 1,3,5,7,9
2,4,6,8,10 .166667 .166667 2,4,6,8,10
k269, 1% - 461581 .156249 29, T .81
228 0:9,12 .156208 .151789 2,5,8,10,12
gl ot 8 1 e B .151445 .149512 2,5,8,11,13
25,8, 5114 .147286 .147286 2,5,8,11,14
2:;5,8,11.14 .142944 .142944 2,5,8,11,14
2.5.9.12.15 .138755 .138676 2.6.9,12,15
;85,9 .33 18 .135380 .134829 2,6,10,13,16
3:8:30:13,17 .132204 .131596 2,6,10,14,17
3,6,10,14,18 « L3129 .128442 2,6,10,14,18
3,7:31:;35;:19 .129967 .124524 2,6,10,14,18
3 7334 35,:19 «129375 « 429375 3,7,11,15,19
3,131 :58;:20 .128149 .127480 3,8,12,16,20
3:7;:;12:26;21 .126831 .126242 3,8,13;17,2)
3,8,32:17,23 .125684 .125346 3.,8,13.18,22
3,8,13,18,23 . 124446 .12444¢6 3.6.13.18,23
3.8,13:18,23 .123047 .123047 3;8,13,18,23
3,9,14,19,24 .121769 .121769 3,9,14,19,24
4,9,14,20,25 «121528 .120410 32,9.15.20,25
4,9,15,20,26 .121159 «119159 3,9,15,21,26
$.9,15:2%, 37 .120655 .117884 3,9,15;21,27
4,10,16,22,28 .120110 .116301 3,9,15,21,27
4,10,16,22,28 .119700 .119700 4,10,16,22,28
4,30,17,23,29 .119072 .118888 $.11,17,23,29
%:11,37,23,40 .118428 .118246 4,11,18,25,30
4,11,:17,;24,31 .117841 wilid T 4,11,18,24,31
4,11,18,25,32 .117188 .117188 4,11,18,25,32
P G B 5 LT .116839 .116434 4,11,18,25,32
9,12,19,26,33 .116713 .116713 5,12,19,26,33
$5.12,19,27, 34 .116508 .116453 5,12,20,27,34
$:,12,20,27,38 .116233 .116194 $,12,20,28,358
$.13,20,28,36 .115891 .115886 5,12,20,28,36
$:13,21;29,37 .115570 .115384 5,12,20,28,36
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TABLE 2
(Continued)
Optimal Rule Last Choice Rule

N Starting Times PA(CS) PB(CS) Starting Times

44 X,1%,2),29,37 .115264 .115264 5,13,21,29,.37

45 5.,13,22,30,38 .114858 .114797 5,14,22,30,38

46 5,14,22,30,39 .114466 .114379 5,14,23,31,39

47 6,14,22,31,40 .114241 .114015 5,14,23,32,40

48 6,14,23,32,41 »114135 .113642 5,14,23,32,41

49 6,14,23,32,41 .113944 .113145 5,14,23,32,41

50 6,15,24,33,42 .113844 .113844 6,15,24,33,42

60 7.18,28,39,50 .112087 «311178 6,17,28,39,50

70 8,20,33,46,59 .110912 .110156 7,20,33,46,59

80 9,23,38,52,67 .110031 .110018 9,23,38,53,67

90 10,26,42,59,75 .109350 .109338 10,26,32,59,75
100 11,29,47,65,83 .108808 .108808 11,29,47,65,83
1000 108,281,460,639,820 .104736 .104612 102,278,458,639,820
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